
ECMA
EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-55

Minimal BASIC

January 1978

Free copies of this ECMA standard are available from

ECMA European Computer Manufacturers Association

114 Rue du Rhone - 1204 Geneva (Switzerland)

ECMA
EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-55

Minimal BASIC

January 1978

BRIEF HISTORY

The first version of the language BASIC, acronym for Beginner's
All-purpose Symbolic Instruction Code, was produced in 1964 at
the Dartmouth College in the USA. This version of the language
was oriented towards interactive use. Subsequently, a number of
implementations of the language were prepared, that differed in
part from the original one.

In 1974, the ECMA General Assembly recognized the need for a
standardized version of the language, and in September 1974 the
first meeting of the ECMA Committee TC 21, BASIC, took place.
In January 1974, a corresponding committee, X3J2, had been found¬
ed in the USA.

Through a strict co-operation it was possible to maintain full
compatibility between the ANSI and ECMA draft standards. The ANSI
one was distributed for public comments in January 1976 , and a
number of comments were presented by ECMA.

A final version of the ECMA Standard was prepared at the meeting
of June 1977 and adopted by the General Assembly of ECMA on
Dec. 14, 1977 as Standard ECMA-55,

TABLE OF CONTENTS

1. SCOPE

Page

1

2. REFERENCES 1

3. definitions 1

3.1 BASIC 1

3.2 Batch Mode 1

3 . 3 End-of-Line 2

3. 4 Error 2

3.5 Exception 2

3.6 Identifier 2

3.7 Interactive Mode 2

3. 8 Keyword 2

3.9 Line 2

3.10 Nesting 2

3.11 Print Zone 3

3.12 Rounding 3

3.13 Significant Digits 3

3.14 Truncation 3

4. CHARACTERS AND STRINGS 3

5. PROGRAMS 5

6. CONSTANTS 6

7. VARIABLES 8

8. EXPRESSIONS 9

9. IMPLEMENTATION SUPPLIED FUNCTIONS 11

10. USER DEFINED FUNCTIONS 13

11. LET STATEMENT 14

12. CONTROL STATEMENTS 15

13. FOR AND NEXT STATEMENTS 17

14. PRINT STATEMENT 19

15. INPUT STATEMENT 21

16. READ AND RESTORE STATEMENTS 23

17. DATA STATEMENT 24

18. ARRAY DECLARATIONS 25

19. REMARK STATEMENT 26

20. RANDOMIZE STATEMENT 26

TABLE 1 - BASIC Character Set 28

TABLE 2 - BASIC Code 29

APPENDIX 1 - Organization of the Standard 30

APPENDIX 2 - Method of Syntax Specificat ion 32

APPENDIX 3 - Conformance 34

APPENDIX 4 - Implementation-defined Features 35

1

1. SCOPE

This Standard ECMA-55 is designed to promote the interchangeabi¬
lity of BASIC programs among a variety of automatic data process¬
ing systems. Subsequent Standards for the same purpose will de¬
scribe extensions and enhancements to this Standard. Programs
conforming to this Standard, as opposed to extensions or enhance¬
ments of this Standard, will be said to be written in "Minimal
BASIC".

This Standard establishes:

- the syntax of a program written in Minimal BASIC.

- The formats of data and the precision and range of numeric re¬
presentations which are acceptable as input to an automatic
data processing system being controlled by a program written
in Minimal BASIC.

- The formats of data and the precision and range of numeric re¬
presentations which can be generated as output by an automatic
data processing system being controlled by a program written
in Minimal BASIC.

- The semantic rules for interpreting the meaning of a program
written in Minimal BASIC.

- The errors and exceptional circumstances which shall be detect¬
ed and also the manner in which such errors and exceptional cir¬
cumstances shall be handled.

Although the BASIC language was originally designed primarily for
interactive use, this Standard describes a language that is not
so restricted.

The organization of the Standard is outlined in Appendix 1. The
method of syntax specification used is explained in Appendix 2.

2. REFERENCES

ECMA-6 :

ECMA-53 :

7-Bit Input/Output Coded Character Set,

Representation of Source Programs

4th Edition

3. DEFINITIONS

For the purposes of this Standard, the following terms have the
meanings indicated.

3.1 BASIC

A term applied as a name to members of a special class of lan¬
guages which possess similar syntaxes and semantic meanings;
acronym for Beginner's All-purpose Symbolic Instruction Code.

3.2 Batch-mode

The processing of programs in an environment where no provision
is made for user interaction.

2

3. 3 End-of-line

The character(s) or indicator which identifies the termination
of a line. Lines of three kinds may be identified in Minimal
BASIC: program lines, print lines and input reply lines.
End-of-line may vary between the three cases and may also vary
depending upon context. Thus, for example, an end of input
line may vary on a given system depending on the terminal being
used in interactive or batch mode.

Typical examples of end-of-line are carriage-return, carriage-
return line-feed, and end of record (such as end of card).

3.4 Error

A flaw in the syntax of a program which causes the program to

be incorrect.

3.5 Exception

A circumstance arising in the course of executing a program
which results from faulty data or computations or from exceed¬
ing some resource constraint. Where indicated certain excep¬
tions (non-fatal exceptions) may be handled by the specified
proceduresi if no procedure is given (fatal exceptions) or if
restrictions imposed by the hardware or operating environment
make it impossible to follow the given procedure, then the ex¬
ception shall be handled by terminating the program.

3.6 I denti fi er

A character string used to name a variable or a function.

3.7 Interactive mode

The processing of programs in an environment which permits the
user to respond directly to the actions of individual programs
and to control the commencement and termination of these pro¬

grams .

3.8 Keyword

A character string, usually with the spelling of a commonly
used or mnemonic word, which provides a distinctive identifi¬
cation of a statement or a component of a statement of a pro¬
gramming language.

The keywords in Minimal BASIC are: BASE, DATA, DEF, DIM, END,
FOR, GO, GOSUB, GOTO, IF, INPUT, LET, NEXT, ON, OPTION, PRINT,
RANDOMIZE, READ, REM, RESTORE, RETURN, STEP, STOP, SUB, THEN

and TO.

3.9 Line

A single transmission of characters which terminates with an

end-of-line.

3.10 Nesting

A set of statements is nested within another set of statements

when:

3

- the nested set is physically contiguous, and
- the nesting set (divided by the nested set) is non-null.

3.11 Print zone

A contiguous set of character positions in a printed output
line which may contain an evaluated print statement element.

3.12 Rounding

The process by which the representation of a value with lower
precision is generated from a representation of higher preci¬
sion taking into account the value of that portion of the ori¬
ginal number which is to be omitted.

3.13 Significant digits

The contiguous sequence of digits between the high-order non¬
zero digit and the low-order non-zero digit, without regard
for the location of the radix point. Commonly, in a normalized
floating point internal representation, only the significant
digits of a representation are maintained in the significance.

NOTE: The Standard requires that the ability of a conforming

implementation to accept numeric representations be

measured in terms of significant digits rather than the

actual number of digits (that is including leading or

trailing zeroes) in the representation.

3.14 Truncation

The process by which the representation of a value with lower
precision is generated from a representation of higher preci¬
sion by merely deleting the unwanted low order digits of the
original representation.

4. CHARACTERS AND STRINGS

4.1 General Description

The character set for BASIC is contained in the ECMA 7-bit
coded character set. Strings are sequences of characters and
are used in BASIC programs as comments (see 19), as string con¬
stants (see 6), or as data (see 15).

4.2 Syntax

1. letter

2. digit
3. string-character
4. quoted-string-

character

5. unquoted-string-
character

A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/

U/V/W/X/Y/Z
0/1/2/3/4/5/6/7/8/9
quotation-mark / quoted-string-character
exclamation-mark / number-sign / dollar-
sign / percent-sign / ampersand /
apostrophe / left-parenthesis / right-
parenthesis / asterisk / comma / solidus /
colon / semi-colon / less-than-sign /
equals-sign / greater-than-sign /
question-mark / circumflex-accent /
underline / unquoted-string-character
space / plain-string-character

4

6. plain-string-
character

7. remark-string
8. quoted-string

9. unquoted-string

= plus-sign / minus-sign / full-stop /
digit / letter

= string-character*
= quotation-mark quoted-string-character*

quotation-mark
= plain-string-character /

plain-st ring-character
unquoted-string-characte r*
plain-st ring-character

4.3 Examp les

ANY CHARACTERS AT ALL (?!*!!) CAN BE USED IN A "REMARK".
"SPACES AND COMMAS CAN OCCUR IN QUOTED STRINGS."
COMMAS CANNOT OCCUR IN UNQUOTED STRINGS.

4.4 Semanti cs

The letters shall be the set of upper-case Roman letters con¬
tained in the ECMA 7-bit coded character set in positions 4/1

to 5/10.

The digits shall be the set of arabic digits contained in the
ECMA 7-bit coded character set in positions 3/0 to 3/9.

The remaining string-characters shall correspond to the remain¬
ing graphic characters in position 2/0 to 2/15, 3/10 to 3/15
and in positions 5/14, 5/15 of the ECMA 7-bit coded character

set.

The names of characters are specified in Table 1.

The coding of characters is specified in Table 2; however, this
coding applies only when programs and/or input/output data are
exchanged by means of coded media.

4.5 Exceptions

None.

4.6 Remarks

Other characters from the ECMA 7-bit coded character set (in¬
cluding control characters) may be accepted by an implementation
and may have a meaning to some other processor (such as an editor)
but have no prescribed meaning within this Standard. Programs
containing characters other than the string-characters described
above are not standard-conforming programs.

The several kinds of characters and strings described by the
syntax correspond to the various uses of strings in a BASIC
program. Remark-strings may be used in remark-statements (see
19). Quoted-strings may be used as string-constants (see 6).
Unquoted-strings may be used in addition to quoted-strings as
data elements (see 17) without being enclosed in quotation marks;
unquoted-strings cannot contain leading or trailing spaces.

5

5. PROGRAMS

5.l General Description

BASIC is a line-oriented language. A BASIC program is a sequence
of lines, the last of which shall be an end-line and each of
which contains a keyword. Each line shall contain a unique line-
number which serves as a label for the statement contained in
that line.

on
tor)

ed

ks ;

5.2 Syntax

1. program = block* end-line
2. block = (line/for-block)*
3. line = line-number statement end-of-line
4. 1ine-number = digit digit? digit? digit?
5. end-of-line = Cimplementation-definedl
6. end-line = line-number end-statement end-of-line
7. end-statement = END
8. statement = data-statement / def-statement /

dimension -statement / gosub-statement /
goto-statement / if-then-statement /
input-statement / let-statement /
on-goto-statement / option-statement /
print-statement / randomize-statement /
read-statement / remark-statement /
restore-statement / return-statement /
stop-statement

5.3 Examples

999 END

5.4 Semantics

A BASIC program shall be composed of a sequence of lines order¬
ed by line-numbers, the last of which contains an end-statement.
Program lines shall be executed in sequential order, starting
with the first line, until

- some other action is dictated by a control statement, or
- an exception condition occurs, which results in a termination

of the program, or
- a stop-statement or end-statement is executed.

Special conventions shall be observed regarding spaces. With
the following exceptions, spaces may occur anywhere in a BASIC
program without affecting the execution of that program and
may be used to improve the appearance and readability of the
program.

Spaces shall not appear:

- at the beginning of a line
- within keywords
- within numeric constants
- within line numbers
- within function or variable names
- within two-character relation symbols

6

All keywords in a program shall be preceded by at least one
space and, if not at the end of a line, shall be followed by
at least one space.

Each line shall begin with a line-number. The values of the
integers represented by the line-numbers shall be positive
nonzero; leading zeroes shall have no effect. Statements shall
occur in ascending line-number order.

The manner in which the end of a statement line is detected is
determined by the implementation; e.g. the end-of-line may be
a carriage-return character, a carriage-return character follow¬
ed by a line-feed character, or the end of a physical record.

Lines in a standard-conforming program may contain up to 72
characters; the end-of-line indicator is not included within
this 72 character limit.

The end-statement serves both to mark the physical end of the
main body of a program and to terminate the execution of the
program when encountered.

5.5 Exceptions

None.

5.6 Remarks

Local editing facilities may allow for the entry of statement
lines in any order and also allow for duplicate line-numbers
and lines containing only a line-number. Such editing facili¬
ties usually sort the program into the proper order and in the
case of duplicate line-numbers, the last line entered with
that line-number is retained. In many implementations, a line
containing only a line-number (without trailing spaces) is
usually deleted from the program.

6. CONSTANTS

6.1 General Description

Constants can denote both scalar numeric values and string
values.

A numeric-constant is a decimal representation in positional
notation of a number. There are four general syntactic forms
of (optionally signed) numeric constants:

- implicit point
- explicit point
- explicit point
- implicit point

representation
unsealed representation
scaled representation
scaled representation

s d. . . d
sd..drd..d
sd..drd..dEsd..d
s d. .dEsd. . d

where:

d is a decimal digit,
r is a full-stop
s is an optional sign, and
E is the explicit character E.

- 7 -

A string-constant is a character string enclosed in quotation

marks (see 4).

all

is
ae
1 low-
d.

6.2 Syntax

1. numeric-cons tant

2. sign
3. numeric-rep
4. significand
5. integer
6. fraction
7. exrad
8. string-constant

= sign? numeric-rep
= plus-sign / minus-sign
= significand exrad?
= integer full-stop? / integer? fraction
= digit digit*
= full-stop digit digit*
= E sign? integer
= quoted-string

a

he

nt
s
i-
the

ne

6.3 Examples

1 500 -21. . 255 IE 10
5E-1 .4E+1
"XYZ" "X - 3B2" "IE 10"

6.4 Semanti cs

The value of a numeric-constant is the number represented by
that constant. "E" stands for "times ten to the power"; if no
sign follows the symbol "E", then a plus sign is understood.
Spaces shall not occur in numeric-constants.

A program may contain numeric representations which have an
arbitrary number of digits, though implementations may round
the values of such representations to an implementation-defined
precision of not less than six significant decimal digits. Numeric
constants can also have an arbitrary number of digits in the ex¬
rad, though nonzero constants whose magnitude is outside an im¬
plementation-defined range will be treated as exceptions. The
implementation-defined range shall be at least IE-38 to 1E+38.
Constants whose magnitudes are less than machine infinitesimal
shall be replaced by zero, while constants whose magnitudes are
larger than machine infinity shall be diagnosed as causing an
overflow.

A string-constant has as its value the string of all characters
between the quotation marks; spaces shall not be ignored. The
length of a string-constant, i.e. the number of characters con-

1 tained between the quotation-marks, is limited only by the length
s of a line.

6.5 Exceptions

The evaluation of a numeric constant causes an overflow (non-
fatal, the recommended recovery procedure is to supply machine
infinity with the appropriate sign and continue).

6.6 Remarks

Since this Standard does not require that strings with more
than 18 characters be assignable to string variables (see 7),
conforming programs can use string constants with more than
18 characters only as elements in a print-list.

- 8 -

It is recommended that implementations report constants whose
magnitudes are less than machine infinitesimal as underflows
and continue.

7. VARIABLES

7.1 General Description

Variables in BASIC are associated with either numeric or
string values and, in the case of numeric variables, may be
either simple variables or references to elements of one or
two dimensional arrays; such references are called subscript¬
ed variables.

Simple numeric variables shall be named by a letter followed
by an optional digit.

Subscripted numeric variables shall be named by a letter fol¬
lowed by one or two numeric expressions enclosed within pa-
renthese s.

7.3

7.4

String variables shall be named by a
dollar sign.

letter followed by a

Explicit declarations of variable types are not required; a
dollar-sign serves to distinguish string from numeric variab¬
les, and the presence of
scripted variable from a

a subscript distinguisnes a
simple one.

sub-

7.2 Syntax

1. variable = numeric-variable / string-variable
2 . numeric-variable = simple-numeric-variable /

nume ric-array-elemen t
3. simp le -nume ri c-

variable
= letter digit?

4 . numeric-array-element = numeric-array-name subscript
5. numeric-array-name = letter
6. subscript left-parenthesis numeric-exp re ss ion

(comma numeric-expression)? right-
parenthesis

7. string-variable = letter dollar-sign

Examples

X
S$

Semantics

A5
C$

V(3) W(X,X+Y/2)

At any instant in the execution of a
variable is associated with a single
string-variable is associated with a
The value associated with a variable

program, a numeric-

execution of statements in the program.

numeric value and a
single string value,
may be changed by the

8.

- 9 -

The length of the character string associated with a string-
variable can vary during the execution of a program from a
length of zero characters (signifying the null or empty string)

to 18 characters.

Simple-numeric-variables and string-variables are declared im¬
plicitly through their appearance in a program.

A subscripted variable refers to the element in the one or two
dimensional array selected by the value(s) of the subscript(s).
The value of each subscript is rounded to the nearest integer.
Unless explicitly declared in a dimension statement, subscript¬
ed variables are implicitly declared by their first appearance
in a program. In this case the range of each subscript is from
zero to ten inclusive, unless the presence of an option-state¬
ment indicates that the range is from one to ten inclusive. Sub¬
script expressions shall have values within the appropriate range
(see 18).

The same letter shall not be the name of both a simple variable
and an array, nor the name of both a one-dimensional and a two-
dimensional array.

There is no relationship between a numeric-variable and a string-
variable whose names agree except for the dollar-sign.

At the initiation of execution the values associated with all
variables shall be implementation-defined.

7.5 Exceptions

A subscript is not in the range of the explicit or implicit
dimensioning bounds (fatal).

7.6 Remarks

Since initialization of variables is not specified, and hence
may vary from implementation to implementation, programs that
are intended to be transportable should explicitly assign a
value to each variable before any expression involving that
variable is evaluated.

There are many commonly us
plementation-defined initi
commended that all variabl
sense that an exception wi
the value of any variable
assigned a value.

ed alternatives for associating im-
al values with variables; it is re-
es are recognizably undefined in the
11 result from any attempt to access
before that variable is explicitly

8. EXPRESSIONS

8. 1 General Description

Expressions shall be either numeric-expressions or string-
expressions .

Numeric-expressions may be constructed from variables, constants,
and function references using the operations of addition, sub¬
traction, multiplication, division and involution.

10

String-expressions are composed of either a string-variable or

a string-constant.

8.2 Syntax

1. e xp re s s i on
2. numeric-expression =

3. term
4. factor
5. multiplier
6. primary =

7. numeric-function-

ref
8. numeric-function-

name
9. argument-list

10. argument
11. string-expression =

8.3 Examples

3*X - Y~2 A(1)+A(2)+A(3) 2 (-X)
-X/Y SQR(X~2+Y~2)

8. 4 Semantics

The formation and evaluation of numeric-expressions follows the
normal algebraic rules. The symbols circumflex-accent, asteris ,
solidus, plus-sign and minus-sign represent the operations of
involution, multiplication, division, addition and subtraction,
respectively. Unless parentheses dictate otherwise, involutions
are performed first, then multiplications and divisions, and
finally additions and subtractions. In the absence of parenthe¬
ses, operations of the same precedence are associated to the

le f t.

A-B-C is interpreted as (A-B)-C, A'“B~C as (A B) C, A/B/C as

(A/B)/C and -A~B as -(A~B).

If an underflow occurs in the evaluation of a numeric expression
then the value generated by the operation which resulted in t e

underflow shall be replaced by zero.

0~0 is defined to be 1, as in ordinary mathematical usage.

When the order of evaluation of an expression is not constrained
by the use of parentheses, and if the mathematical use of opera¬
tors is associative, commutative, or both, then full use of thes<
properties may be made in order to revise the order of evalua¬

tion of the expression.

In a function reference, the number of arguments supplied shall
be equal to the number of parameters required by the definition

of the function.

numeric-expression / string-expressi

sign? term (sign term)*
factor (multiplier factor)*
primary (circumflex-accent primary)*

asterisk / solidus
numeric-vari able / numeric-rep / numeric-
function-ref / left-parenthesis numeric-

expression
right-parenthesis
numeric-function-name
argument-list?
numeric-defined-function /
numeric-supplied-function
left-parenthesis argument
right-parenthesis
nume ric-e xp re s sion
string-variable / string-constant

11

A function reference is a notation for the invocation of a pre¬
defined algorithm, into which the argument value, if any, is
substituted for the parameter (see 9 and 10) which is used in
the function definition. All functions referenced in an express¬
ion shall either be implementation-supplied or be defined in a
def-statement. The result of the evaluation of the function,
achieved by the execution of the defining algorithm, is a scalar
numeric value which replaces the function reference in the ex¬
pression.

8.5 Excep tions

- Evaluation of an expression results in division by zero
(nonfatal, the recommended recovery procedure is to supply
machine infinity with the sign of the numerator and continue).

- Evaluation of an expression results in an overflow (nonfatal,
the recommended recovery procedure is to supply machine in¬
finity with the algebraically correct sign and continue).

- Evaluation of the operation of involution results in a nega¬
tive number being raised to a non-integral power (fatal).

- Evaluation of the operation of involution results in zero be¬
ing raised to a negative value (nonfatal, the recommended re¬
covery procedure is to supply positive machine infinity and
continue).

8.6 Remarks

The accuracy with which the evaluation of an expression takes
place will vary from implementation to implementation. While no
minimum accuracy is specified for the evaluation of numeric-
expressions, it is recommended that implementations maintain at
least six significant decimal digits of precision.

The method of evaluation of the operation of involution may
depend upon whether or not the exponent is an integer. If it
is, then the indicated number of multiplications may be per¬
formed; if it is not, then the expression may be evaluated
using the LOG and EXP functions (see 9).

It is recommended that implementations report underflow as an
exception and continue.

9. IMPLEMENTATION SUPPLIED FUNCTIONS

9.1 General Description

Predefined algorithms are supplied by the implementation for
the evaluation of commonly used numeric functions.

9.2 Syn t ax

1. numeric-supplied-function = ABS / ATN / COS / EXP / INT /
LOG / RND / SGN / SIN / SQR / TAN

Examples 9.3

None.

9.4 Semantics

The values of the implementation-supplied functions, as well as
the number of arguments required for each function, are described
below. In all cases, X stands for a numeric expression.

Function

ABS(X)

ATN(X)

Function value

The absolute value of X.

The arctangent of X in radians, i.e. the angle
whose tangent is X. The range of the function

is
-(pi/2) < ATN(X) < (pi/2)

where pi is the ratio of the circumference of
a circle to its diameter.

COS(X)

EXP(X)

INT(X)

LOG(X)

The cosine of X, where X is in radians.

The exponential of X, i.e. the value of the
base of natural logarithms (e = 2,71828...)
raised to the power X; if EXP(X) is less than
machine infinitesimal, then its value shall
be replaced by zero.

The largest integer not greater than X; e.g.
INT(1.3) = 1 and INT(-1.3) = -2.

The natural logarithm of X; X must be greater
than zero.

RND

SGN(X)

The next pseudo-random number in an implemen¬
tation-supplied sequence of pseudo-random num¬
bers uniformly distributed in the range 0 <=
RND < 1 (see also 20).

The sign of X: -1 if X < 0, 0 if X = 0 and
+1 if X > 0.

SIN(X)

SQR(X)

The sine of X, where X is in radians.

The nonnegative square root of X; X must be
nonnegative.

The tangent of X, where X is in radians. TAN (X)

9.5 Exceptions

- The value of the argument of the LOG function is zero or ne¬
gative (fatal).

- The value of the argument of the SQR function is negative
(fatal).

- The magnitude of the value of the exponential or tangent
function is larger than machine infinity (nonfatal, the re¬
commended recovery procedure is to supply machine infinity
with the appropriate sign and continue).

13

9.6 Remarks

The RND function in the absence of a randomize-statement (see
20) will generate the same sequence of pseudo-random numbers
each time a program is run. This convention is chosen so that
programs employing pseudo-random numbers can be executed se¬
veral times with the same result.

It is recommended that, if the value of the exponential function
is less than machine infinitesimal, implementations report this
as an underflow and continue.

10. USER DEFINED FUNCTIONS

10.1 General Description

In addition to the implementation supplied functions provided
for the convenience of the programmer (see 9), BASIC allows
the programmer to define new functions within a program.

The general form of statements for defining functions is

DEF FNx = expression
or DEF FNx (parameter) = expression

where x is a single letter and a parameter is a simple numeric-
variable.

10.2 Syntax

1. def-statement

nume ric-de fined-
function
parameter-list

4. parameter

10.3 Examples

FNF(X) = DEF
DEF FNA(X)

10.4 Semantics

X~4
A*X

1
B

DEF numeric-defined-function
parame ter- list? equals-sign
numeric-expres si on

FN letter
left-parenthesis parameter
right-parenthesis
simple-numeric-variable

DEF FNP = 3.14159

A function definition specifies the means of evaluating the
function in terms of the value of an expression involving the
parameter appearing in the parameter-list and possibly other
variables or constants. When the function is referenced, i.e.
when an expression involving the function is evaluated, then
the expression in the argument list for the function reference,
if any, is evaluated and its value is assigned to the parameter
in the parameter-list for the function definition (the number
of arguments shall correspond exactly to the number of para¬
meters). The expression in the function definition is then eva¬
luated, and this value is assigned as the value of the function,

14

The parameter appearing in the parameter-list of a function
definition is local to that definition, i.e. it is distinct
from any variable with the same name outside of the function
definition. Variables which do not appear in the parameter-
list are the variables of the same name outside the function

de finition .

A function definition shall occur in a lower numbered line
than that of the first reference to the function. The expres¬
sion in a def-statement is not evaluated unless the defined
function is referenced.

If the execution of a program reaches a line containing a
def-statement, then it shall proceed to the next line with no

other effect.

A function definition may refer to other defined functions,
but not to the function being defined. A function shall be de¬
fined at most once in a program.

10.5 exceptions

None .

11. LET STATEMENT

11.1 General Description

A let-statement provides for the assignment of the value of
an expression to a variable. The general syntactic form of
the let-statement shall be

LET variable = expression

11.2 Syntax

1. let-statement = numeric-let-statement /
string-let-statement

2. numeric-let-statement = LET numeric-variable equals-sign
numeric-expre ssion

3. string-let-statement = LET string-variable equals-sign
string-expression

11.3 Examples

LET P = 3.14159
LET A(X,3) = SIN(X)*Y + 1

LET A$ = "ABC"
LET A$ = B$

11.4 Semantics

The expression is evaluated (see 8) and its value is assigned
to the variable to the left of the equals sign.

11.5 Exceptions

A string datum contains too many characters (fatal).

15

12. CONTROL STATEMENTS

12.1 General Description

Control statements allow for the interruption of the normal
sequence of execution of statements by causing execution to
continue at a specified line, rather than at the one with the
next higher line number.

The goto-statement

GO TO line-number

allows for an unconditional transfer.

The if-then-statement

IF expl rel exp2 THEN line-number

where "expl" and'texp2" are expressions and "rel" is a relation¬
al operator, allows for a conditional transfer.

The gosub and return statements

GO SUB line-number
RETURN

allow for subroutine calls.

The on-goto-statement

ON expression GO TO line-number, ..., line-number

allows control to be transferred to a selected line.

Tne stop-statement

STOP

allows for program termination.

12.2 Syntax

1. goto-statement
2. if-then-statement

3. relational-expression

4. relation

5. equality-relation
6. not-less
7. not-greater
8. not-equals
9. gosub-statement

10. return-statement
11. on-goto-statement

GO space* TO line-number
IF relational-expression THEN
line-number
numeric-expression relation
numeric-expression / string-
expression equality-relation
string-expression
equality-relation / less-than-
sign / greater-than-sign / not-
less / not-greater
equals-sign / not-equals
greater-than-sign equals-sign
less-than-sign equals-sign
less-than-sign greater-than-sign
GO space* SUB line-number
RETURN
ON numeric-expression GO space*
TO line-number (comma line-number)

16

12. stop-statement = STOP

12.3 Examples

GO TO 999
IF A$ <> !

12.4 Semantics

THEN 550

Y+83 then 200
GO TO 300,400,500

A goto-statement indicates that execution of the program is to

be continued at the specified line-number.

Tf the value of the relational-expression in an lf-then-state-
mentls true, then execution of the program shall continue from

the specified line-number; if the value ol
then

the relational-ex¬

execution shall be continued in sequence
on the line following that containing

nression is false,
i.e. with the statement
the if-then-statement.

The relation "less than or equal to" shall be denoted by <-•
Similarly, "greater than or equal to" shall be denoted y >

while "not equal to" shall be denoted by <>.

The relation of equality holds between two strings if and only
if the two strings have the same length and contain identica

sequences of characters.

The execution of the gosub-statement and the return-statement
Ian be described in terms of a stack of line-numbers (but may
be implemented in some other fashion). Prior to execution o
the first gosub-s tatement by the program, this stack is empty.
Each time a gosub-statement is executed, the line num er
the gosub-statement is placed on top of the stack and
of the program is continued at the line specified in the gosub
statement. Each time a return-statement is executed, the li
number on top of the ^ removed from the stack and exe

cution of the program is continued at
one with that line-number.

the line following the

that equal numbers of gosub-statements and
re turn-statement s^be "exe cute dbe fore termination of the program.

The expression in an on-goto-statement shall be evaluated and
rounded to obtain an integer, whose value is then used
a line-number from the list following the GOTO (the ^-numbers
in the list are indexed from left to right, starting)•
Execution of the program shall continue at the statement with

the selected line-number.

All line-numbers in control-statements shall refer to lines in

the program.

The stop-statement causes termination of the program.

12.5 Exceptions

- An attempt is made to execute a return-statement without
having executed a corresponding gosub-statement (fatal).

17

- The integer obtained as the value of an expression in an
on-goto-statement is less than one or greater than the
number of line-numbers in the list (fatal).

13. FOR AND NEXT STATEMENTS

13.1 General Description

The for-statement and next-statement provide for the construct¬
ion of loops. The general syntactic form of the for-statement
and next-statement is

FOR v = initial-value TO limit STEP increment
NEXT v

where "v" is a simple numeric variable and the "initial-value",
"limit" and "increment" are numeric expressions; the clause
"STEP increment" is optional.

13.2 Syntax

1. for-block
2. for-body
3. for-line

4. next-line

5. for-statement

6. control-variable
7. initial-value
8. limit
9. increment

10. next-statement

13.3 Example s

FOR I = 1 TO 10
NEXT I

13.4 Semantics

The for-statement and the next-statement are defined in con¬
junction with each other. The physical sequence of statements
beginning with a for-statement and continuing up to and in¬
cluding the first next-statement with the same control variable
is termed a "for-block". For-blocks can be physically nested,
i.e. one can contain another, but they shall not be interleaved,
i.e. a for-block which contains a for-statement or a next-
statement shall contain the entire for-block begun or ended by
that statement.

Furthermore, physically nested for-blocks shall not use the
same control variable.

= for-line for-body
= block next-line
= line-number for-statement end-of-

1 ine
= line-number next-statement end-

of-line
= FOR control-variable equals-sign

initial-value TO limit (STEP
increment)?

= simple-numeric-variable
= numeric-expression
= numeric-expression
= numeric-expression
= NEXT control-variable

FOR I = A TO B STEP -1
NEXT I

18

In the absence of a STEP clause in a for-statement, the incre¬

ment is assumed to be +1.

The action of the for-statement and the next-statement is de

fined in terms of other statements, as follows.

FOR v = initial-value TO limit STEP increment

(block)
NEXT v

is equivalent to:

LET ownl = limit
LET own2 = increment
LET v = initial-value

line 1 IF (v-ownl) * SGN (own2) > 0 THEN line2
(block)
LET v = v + own2
GOTO line 1

line2 REM continued in sequence

Here v is any simple-numeric-variable, ownl and own2 are va¬
riables associated with the particular for-block and not ac¬
cessible to the programmer, and linel and line2 are line-numbers
associated with the particular for-block and not accessible to
the programmer. The variables ownl and own2 are distinct fiom
similar variables associated with other for-blocks. A program
shall not transfer control into a for-body by any statement
other than a return statement (see 12).

13-5 Exceptions

None.

13.6 Remarks

Where arithmetic is approximate (as with decimal fractions in a
binary machine), the loop will be executed within the limits of
machine arithmetic. No presumptions about approximate achieve¬
ment of the end test are made. It is noted that in most ordinary
situations where machine arithmetic is truncated (rather than

rounded), such constructions as

FOR X = 0 TO 1 STEP 0.1

will work as the user expects, even though 0.1 is not represent¬
able exactly in a binary machine. If this is indeed the case,

then the construction

FOR X = 1 TO 0 STEP -0.1

will probably not work as expected.

As specified above, the value of the control-variable upon
exit" from a for-block via its next-statement is the first va¬
lue not usedj if exit is via a control-statement, the control
variable retains the value it has when the control-statement

is executed.

The variables "ownl" and "own2" associated with a for-block are
assigned values only upon entry to the for-block through its

for-s tatement.

19

!4. PRINT STATEMENT

14.1 General Description

The print-statement is designed for generation of tabular out¬

put in a consistent format.

The general syntactic form of the print-statement is

PRINT item p item p ... p item

where each item is an expression, a tab-call, or null, and
each punctuation mark p is either a comma or a semi-colon.

14.2 Syntax

1. print-statement
2. print-list

3. print-item
4. tab-call

5. print-separator

14.3 Examples

PRINT X
PRINT X; (Y+Z)/2
PRINT
PRINT TAB(10); A$; "IS DONE

PRINT print-list?
(print-item? print-separator)*

p rint- i tern ?
expression / tab-call
TAB left-parenthesis numeri c-expres
sion right-parenthesis
comma / semicolon

PRINT "X EQUALS", 10
PRINT X, Y
PRINT ,,,X

14.4 Semantics

The execution of a print-statement generates a string of char¬
acters for transmission to an external device. This string of
characters is determined by the successive evaluation of each
print-item and print-separator in the print-list.

Numeric-expressions shall be evaluated to produce a string of
characters consisting of a leading space if the number is po¬
sitive or a leading minus-sign if the number is negative fol¬
lowed by the decimal representation of the absolute value of
the number and a trailing space. The possible formats for the
decimal representation of a number are the same as those des¬
cribed for numeric-constants in 6 and are used as follows.

Each implementation shall define two quantities, a significance-
width d to control the number of significant decimal digits
printed in numeric representations, and an exrad-width e to con¬
trol the number of digits printed in the exrad component of a
numeric representation. The value of d shall be at least six
and the value of e shall be at least two.

Each number that can be represented exactly as an integer with
d or fewer decimal digits is output using the implicit point

unsealed representation.

All other numbers shall be output using either explicit point
unsealed notation or explicit point scaled notation. Numbers
which can be represented with d or fewer digits in the unsealed
format no less accurately than they can be represented in the
scaled format shall be output using the unsealed format. For
example, if d = 6, then 10~(-6) is output as .000001 and

20

l(T(-7) is output as l.E-7.

Numbers represented in the explicit point unsealed notation shall
be output with up to d significant decimal digits and a full-
stop; trailing zeroes in the fractional part may be omitted.
A number with magnitude less than 1 shall be represented with
no digits to the left of the full-stop. This form requires up
to d+3 characters counting the sign, the full-stop and the
trailing space.

Numbers represented in the explicit point scaled notation shall
be output in the format

significand E sign integer

where the value x of the significand is in the range 1 <= x < 10
and is to be represented with exactly d digits of precision, and
where the exrad component has one to e digits. Trailing zeroes
may be omitted in the fractional part of the significand and
leading zeroes may be omitted from the exrad. This form re¬
quires up to d+e+5 characters counting the two signs, the full-
stop, the "E" and a trailing space.

String-expressions shall be evaluated to generate a string of
characters.

The evaluation of the semicolon separator shall generate the
null string, i.e. a string of zero length.

The evaluation of a tab-call or a comma separator depends upon
the string of characters already generated by the current or
previous print-statements. The "current line" is the (possibly
empty) string of characters generated since the last end-of-
line was generated. The "margin" is the number of characters,
excluding the end-of-line character, that can be output on one
line and is defined by the implementation. The "columnar posi¬
tion" of the current line is the print position that will be
occupied by the next character output to that line; print posi¬
tions are numbered consecutively from the left, starting with
position one.

Each print-line is divided into a fixed number of print zones,
where the number of zones and the length of each zone is im¬
plementation defined. All print zones, except possibly the last
one on a line, shall have the same length. This length shall
be at least d+e+6 characters in order to accomodate the print¬
ing of numbers in explicit point scaled notation as des¬
cribed above and to allow the comma separator to move the print¬
ing mechanism to the next zone as described below.

The purpose of the tab-call is to set the columnar position of
the current line to the specified value prior to printing the
next print-item. More precisely, the argument of the tab-call
is evaluated and rounded to the nearest integer n. If n is less
than one, an exception occurs. If n is greater than the margin
m, then n is reduced by an integral multiple of m so that it
is in the range 1 <= n <= m; i.e. n is set equal to

21

n - m * INT ((n-l)/m).

I£ the columnar position of the current line is less than or
equal to n, then spaces are generated, if necessary, to set the
columnar position to n; if the columnar position of the current
line is greater than n, then an end-of-line is generated follow¬
ed by enough spaces to set the columnar position of the new cur¬

rent line to n.

The evaluation of the comma-separator generates one or more
spaces to set the columnar position to the beginning of the
next print zone, unless the current print zone is the last on
the line, in which case an end-of-line is generated.

If the print list does not end in a print-separator, then an
end-of-line is generated and added to the characters generated
by the evaluation of the print-list.

If the evaluation of any print-item in a print-list would cause
the length of a nonempty line to exceed the margin, then an
end-of-line is generated prior to the characters generated by
that print-item. Subsequently, if the evaluation of a print-
item generates a string whose length is greater than the mar¬
gin, then end-of-lines are inserted after every m characters
in the string, where m is the margin value.

14.5 Exceptions

The evaluation of a tab-call argument generates a value less
than one (nonfatal: the recommended recovery procedure is to
supply one and continue).

14.6 Remarks

The comma-separator allows the programmer to tabulate the print¬
ing mechanism to fixed tab settings at the end of each print

zone .

A completely empty print-list will generate an end-of-line,
thereby completing the current line of output. If this line
contained no characters, then a blank line results.

A print line on a typical terminal might be divided into five
print zones of fifteen print positions each.

15. INPUT STATEMENT

15.1 General Description

Input-statements provide for user interaction with a running
program by allowing variables to be assigned values that are
supplied by a user. The input-statement enables the entry of
mixed string and numeric data, with data items being separat¬
ed by commas. The general syntactic form of the input-state¬

ment is

INPUT variable, ..., variable

22

15.2 Syntax

1. input-statement
2 . variable-list
3. input-prompt
4. input-reply
5. input-list
6. padded-datum
7. datum

INPUT variable-list
variable (comma variable)*
Cimplementation-definedD
input-list end-of-line
padded-datum (comma padded-datum)*
space* datum space*
quoted-string / unquoted-string

15.3 Examples

INPUT X
3.14159

INPUT X, A$, Y(2)
2,SMITH,-3

INPUT A, B, C
25,0 ,-15

15.4 Semantics

An input-statement causes the variables in the variable-list
to be assigned, in order, values from the input-reply. In the
interactive mode, the user of the program is informed of the
need to supply data by the output of an input-prompt. In batch
mode, the input-reply is requested from the external source
by an implementation-defined means. Execution of the program
is suspended until a valid input-reply has been supplied.

The type of each datum in the input-reply shall correspond to
the type of the variable to which it is to be assigned; i.e. ,
nume ri c-cons tan ts shall be supplied as input for numeric-
variables, and either quoted-strings or unquoted-strings shall
be supplied as input for string-variables. If the response to
input for a string-variable is an unquoted-string, leading
and trailing spaces shall be ignored (see 4).

If the evaluation of a numeric datum causes an underflow, then
its value shall be replaced by zero.

Subscript expressions in the variable-list are evaluated after
values have been assigned to the variables preceding them
(i.e. to the left of them) in the variable-list.

No assignment of values in the input-reply shall take place un¬
til the input-reply has been validated with respect to the type
of each datum, the number of input items, and the allowable
range for each datum.

15.. 5 Excep tions

- The type of datum does not match the type of the variable to
which it is to be assigned (nonfatal, the recommended recov¬
ery procedure is to request that the input-reply be re-sup¬
plied).

- There is insufficient data in the input-list (nonfatal, the
recommended recovery procedure is to request that the input-
reply be resupplied).

- There is too much data in the input-list (nonfatal, the re¬
commended recovery procedure is to request that the input-
reply be resupplied).

23

- The evaluation of a numeric datum causes an overflow (non-
fatal, the recommended recovery procedure is to request that
the input-reply be resupplied).

- A string datum contains too many characters (nonfatal, the
recommended recovery procedure is to request that the input-
reply he resupplied).

15.6 Remarks

This Standard does not require an implementation to perform
any editing of the input-reply, though such editing may be per¬
formed by the operating environment.

It is recommended that the input-prompt consists of a question-
mark followed by a single space.

This Standard does not require an implementation to output the
input-reply.

It is recommended that implementations report an underflow as
an exception and allow the input-reply to be resupplied.

16. READ AND RESTORE STATEMENTS

16.1 General Description

The read-statement provides for the assignment of values to
variables from a sequence of data created from data-statements
(see 17). The restore-statement allows the data in the program
to be reread. The general syntactic forms of the read and re¬
store statements are

READ variable, ..., variable
RESTORE

16.2 Syntax

1. read-statement = READ variable-list
2. restore-statement = RESTORE

16.3 Examples -±_

READ X, Y, Z READ X(l), A$, C

16.4 Semantics

The read-statement causes variables in the variable-list to be
assigned values, in order, from the sequence of data (see 17).
A conceptual pointer is associated with the data sequence. At
the initiation of execution of a program, this pointer points
to the first datum in the data sequence. Each time a read-state¬
ment is executed, each variable in the variable-list in se¬
quence is assigned the value of the datum indicated by the point¬
er and the pointer is advanced to point beyond that datum.

The restore-statement resets the pointer for the data sequence
to the beginning of the sequence, so that the next read-state¬
ment executed will read data from the beginning of the sequence
once again.

24

The type of a datum in the data sequence shall correspond to
the type of the variable to which it is to be assigned; i.e.,
numeric-variables require unquoted-strings which are numeric-
constants as data and string-variables require quoted-strings
or unquoted-strings as data. An unquoted-string which is a
valid numeric representation may be assigned to either a string-
variable or a numeric-variable by a read-statement.

If the evaluation of a numeric datum causes an underflow, then
its value shall be replaced by zero.

Subscript expressions in the variable-list are evaluated after
values have been assigned to the variables preceding them (i.e.
to the left of them) in the list.

16.5 Exceptions

The variable-list in a read-statement requires more data than
are present in the remainder of the data-sequence (fatal).

An attempt is made to assign a string datum to a numeric
variable (fatal).

The evaluation of a numeric datum causes an overflow (non-
fatal, the recommended recovery procedure is to supply ma¬
chine infinity with the appropriate sign and continue).

A string datum contains too many characters (fatal).

16.6 Remarks

It is recommended that implementations report an underflow as
exception and continue.

17. DATA STATEMENT

17.1 General Description

The data-statement provides for the creation of a sequence of i

representations for data elements for use by the read-statement. "
The general syntactic form of the data-statement is

DATA datum, ..., datum

where each datum is either a numeric constant, a string-constant
or an unquoted string.

17.2 Syntax

1. data-statement = DATA data-list
2. data-list = datum (comma datum)*

17.3 Examples

DATA 3.14159, PI, 5E-10,

17.4 Semantics

Data from the totality of data-statements in the program are
collected into a single data sequence. The order in which data
appear textually in the totality of all data-statements deter¬
mines the order of the data in the data sequence.

25

If the execution of a program reaches a line containing a
data-statement, then it shall proceed to the next line with

no other effect.

17.5 Exceptions

None .

18. ARRAY DECLARATIONS

18.1 General Description

The dimension-statement is used to reserve space for arrays.
Unless declared otherwise, all array subscripts shall have a
lower bound of zero and an upper bound of ten. Thus the default
space allocation reserves space for 11 elements in one-dimen¬
sional arrays and 121 elements in two-dimensional arrays. By
use of a dimension-statement, the subscript(s) of an array may
be declared to have an upper bound other than ten. By use of
an option-statement, the subscripts of all arrays may be de¬
clared to have a lower bound of one.

The general syntactic form of the dimension-statement is

DIM declaration, ..., declaration

where each declaration has the form

letter (integer)
or letter (integer , integer)

The general syntactic form of the option-statement is

OPTION BASE n

where n is either 0 or 1.

18.2 Syntax

1. dimension-statement

2. array-declaration

3. bounds
4. option-statement

18.3 Examples

DIM A (6), B(10,10)

18.4 Semanti cs

Each array-declaration occurring in a dimension-statement de¬
clares the array named to be either one or two dimensional ac¬
cording to whether one or two bounds are listed for the array.
In addition, the hounds specify the maximum values that sub¬
script expressions for the array can have.

The declaration for an array, if present at all, shall occur in
a lower numbered line than any reference to an element of that

= DIM array declaration
(comma array-declaration)*

= numeri c-array-name left-parenthesis
bounds right-parenthesis

= integer (comma integer)?
= OPTION BASE (0/1)

26

array. Arrays that are not declared in any dimension-statement
are declared implicitly to be one or two dimensional according
to their use in the program, and to have subscripts with a
maximum value of ten (see 7).

The option-statement declares the minimum value for all array
subscripts; if no option-statement occurs in a program, this
minimum is zero. An option-statement, if present at all, must
occur in a lower numbered line than any dimension-statement or
any reference to an element of an array. If an option-statement
specifies that the lower bound for array subscripts is one, the
no dimens ion-statement in the program may specify an upper boun
of zero. A program may contain at most one option-statement.

If the execution of a program reaches a line containing a di¬
mension-statement or an option-statement, then it shall pro¬
ceed to the next line with no other effect.

An array can be explicitly dimensioned only once.

18.5 Exceptions

None.

19. REMARK STATEMENT

19.1 General Description

The remark-statement allows program annotation.

19.2 Syntax

1. remark-statement = REM remark-string

19.3 Ex amples

REM FINAL CHECK

19.4 Semanti cs

If the execution of a program reaches a line containing a
remark-statement, then it shall proceed to the next line with
no other effect.

19.5 Exceptions

None.

20. RANDOMIZE STATEMENT

20.1 General Description

The randomize-statement overrides the implementation-predefined
sequence of pseudo-random numbers as values for the RND func¬
tion, allowing different (and unpredictable) sequences each
time a given program is executed.

2Q.2 Syntax

1. randomize-statement = RANDOMIZE

20.3 Ex amples

RANDOMIZE

C
L

3

27

20.4 Semantics

Execution of the randomize-statement shall generate a new un¬
predictable starting point for the list of pseudo-random num¬
bers used by the RND function (see 9).

20.5 Exceptions

None.

20.6 Remarks

In the case of implementations which do not have access to a
randomizing device such as a real-time clock, the randomize-
statement may be implemented by means of an interaction with

the user.

28

NAME GRAPHIC

Space

Exclamation-mark |

Quotation-mark II

Number-sign tt

Dollar-sign $

Percent-sign %

Ampersand &

Apostrophe 1

Le ft-parenthesis (

Right-parenthesis)

Asterisk ★

Plus-sign +

Comma /

Minus-sign -

Full-stop -

Solidus /

Digits 0-9

Colon :

Semi-colon /

Less-than-sign <

Equals-sign =

Greater-than-sign >

Question-mark 9

Letters A - Z

Circumflex-accent -

Underline —

TABLE 1

- 29 -

a D 0 0 0 1 1 1 fl
13 0 0 1 1 0 0 1 1
3 o l 0 1 0 l 0 1

0 1 2 3 4 5 6 7

0 0 0 0 0 NUl re,
<01.0

SP 0 B P
V

11
0 0 0 1 1 TC„ > D C> 1 T A Q

W:

0 0 1 0 2 TC, < s i ?.;• DC,
11 2 B R |j|f r

0 0 1 1 3 t C, DC, # 3 C S c S :

0 1 0 0 4 TC< iceoT?
DC. n 4 D T

0 1 0 1 5 TC, <w» TC. (NAK) % 5 E U 1111 U

0 1 1 0 6 TC, XAOO 'rer & 6 F V "1 V

0 1 1 1 7 BEL T C* (gT8>
1 7 G W 9

w

1 0 0 0 8 re. HI (8 H X \ h "j X

1 0 0 1 9 PL. EM) 9 I Y i E;

1 0 1 0 10 FE,
ff-'L. 111 ★ ■ •

■ T T ■ z

1 0 1 1 11 no
Uv.n..,

esc + ■

F K Iff k T
mm

1 1 0 0 12 re* is,
r rtr n

/ “TT 1. ® IE 1

1 1 0 1 13 i' tii IS,
mil

- - M T m T
1 1 1 0 14

A .-®. ,:--,

SO IS,
iSK

■ > N A
n

1 1 1 1 15 $i T 9 0 M DEL

TABLE 2

NOTE: In the 7-bit and in the 8-bit code tables two characters

are allocated to pos. 2/4, namely $ and h. In any version

of the codes a single character is to be allocated to this

position. The character of the 7-bit or of the 8-bit coded

character set, which corresponds to the character $ of the

Minimal BASIC character set is either $ or n (& in the

International Reference Version).

The same applies to pos. 2/3 for the characters £ and tt,

the latter being the character of the International Refer-

ence Version.

30

APPENDIX 1

Organization of the Standard

This Standard is organized into a number of sections, each of which
covers a particular feature of BASIC. Sections 4 to 20 are divided
into sub-sections, as follows.

Sub-section 1. General Description

This sub-section briefly describes the features of BASIC to be treat¬
ed and indicates the general syntactic form of these features.

Sub-section 2. Syntax

The exact syntax of features of the language is described in a modi¬
fied context-free grammar or Backus-Naur Form. The details of this
method of syntax specification are described in Appendix 2.

In order
tion will
spe aking,
allow the

to keep the syntax reasonably simple the syntax
allow it to describe some constructions which,
are not legal according to this Standard, e.g.
generation of the statement

spe cifica-
s trictly
it will

100 LET X = A(1) + A(1,2)

in which the array
Rather than ruling
tax, this Standard

A occurs with differing numbers of subscripts,
such constructions out by a more complicated syn-
shall instead rule them out in the semantics.

Sub-section 3. Examples

A short list of valid examples that can be generated by certain of
the syntax equations in sub-section 2 is given.

Sub-section 4. Semantics

The semantic rules in this Standard serve two purposes. First, they
rule out certain constructions which are permitted by the syntax,
but which have no valid meaning according to this Standard. Second,
they assign a meaning to the remaining constructions.

Sub-section 5. Exceptions

An exception occurs when an implementation recognizes that a program
may not perform or is not performing in accordance with this Standard.
All exceptions described in this section shall be reported unless
some mechanism is provided in an enhancement to this Standard that
has been invoked by the user to handle exceptions.

Where indicated, certain exceptions may be handled by the specified
procedures; if no procedure is given, or if restrictions imposed by

31

the hardware or the operating environment make it impossible to
follow the given procedures, then the exception must be handled by
terminating the program. Enhancements to this Standard may describe
mechanisms for controlling the manner in which exceptions are re¬
ported and handled, but no such mechanisms are specified in this
Standard.

This Standard does not specify an order in which exceptions shall
be detected or processed.

Sub-section 6. Remarks

This sub-section contains remarks which point out certain features
of this Standard as well as remarks which make recommendations con¬
cerning the implementation of a BASIC language processor in an oper¬
ating environment.

32

APPENDIX 2

Method of Syntax Specification

The syntax, through a series of rewriting rules known as "product¬
ions", defines syntactic objects of various types, such as "program"
or "expression", and describes which strings of symbols are objects

of these types.

In the syntax, upper-case letters, digits, and (possibly hyphenated)
lower-case words are used as "metanames", i.e. as names of syntactic
objects. Most of these metanames are defined by rewriting rules in
terms of other metanames. In order that this process terminate, cer¬
tain metanames are designated as "terminal" metanames, and rewriting
rules for them are not included in the syntax. All terminal metanames
occur for the first time and are defined in Section 4. It should be
noted in particular that all upper-case letters are terminal meta¬
names which denote themselves.

We illustrate further details of the syntax by considering some ex¬
amples. In Section 12 we find the production

gosub-statement = GO space* SUB line-number

which indicates that a "gosub-statement" consists of the letters G,
0, any number of spaces, S, U, and B followed by a line number.

What is a "line-number"? In Section 5, the production

line-number = digit digit? digit? digit?

indicates that a "line-number" is a "digit" followed by up to three
other "digits" (the question mark is a syntactic operator indicating
that the object it follows may or may not be present).

What is a "digit"? In Section 4, the production

digit =0/ 1/2/3/ 4/5/6/7/ 8/9

indicates that a "digit" is either a "0", a "1", ... or a "9" (the
solidus is a syntactic operator meaning "or" and is used to indicate
that a metaname can be rewritten in one of several ways). Since the
digits are terminal metanames (i.e. they do not occur on the left-
hand side of any production), our decipherment of the syntax for the
"gosub-statement" comes to an end. The semantics in Section 4 iden¬
tify the digits in terms of the characters they represent.

An asterisk is a syntactic operator like the question-mark, and it
indicates that the object it follows may occur any number of times,
including zero times, in the production.

For example
integer = digit digit*

indicates that an "integer" is a "digit" followed by an arbitrary

33

number of other "digits".

Parentheses may be used to group sequences of metanames together.
For example

variable-list = variable (comma variable)*

defines a "variable-list" to consist of a "variable" followed by an
arbitrary number of other "variables" separated by "commas".

When several syntactic operators occur in the same production, the
operators "?" and "*" take precedence over the operator "/".

Spaces in the syntax are used to separate hyphenated lower-case words
from each other. Special conventions are observed regarding spaces
in BASIC programs (see Section 5). The syntax as described generates
programs which contain no spaces other than those occurring in re¬
marks, in certain string constants, or where the presence of a space
is explicitly indicated by the metaname "space".

Additional spaces may be inserted to improve readability provided
that the restrictions imposed in Section 5 are observed.

34

APPENDIX 3

Conformance

There are two aspects of conformance to this language Standard :
conformance by a program written in the language, and conformance
by an implementation which processes such programs.

A program is said to conform to this Standard only when

- each statement contained therein is a syntactically valid instance
of a statement specified in this Standard,

- each statement has an explicitly valid meaning specified herein,

and

- the totality of statements compose an instance of a valid program
which has an explicitly valid meaning specified herein.

An implementation is said to conform to this Standard only when

- it accepts and processes programs conforming to this Standard,

- it reports reasons for rejecting any program which does not conform
to this Standard,

- it interprets errors and exceptional circumstances according to the
specifications of this Standard,

- its interpretation of the semantics of each statement of a stand¬
ard-conforming program conforms to the specification in this
Standard,

its interpretation of the semantics of a standard-conforming pro¬
gram as a whole conforms to the specifications in this Standard,

- it accepts as input, manipulates, and can generate as output numbers
of at least the precision and range specified in this Standard, and

- it is accompanied by a reference manual which clearly defines the
actions taken in regard to features which are called "undefined"
or "implementation-defined" in this Standard.

This Standard does not include requirements for reporting specific
syntactic errors in the text of a program. Implementations conforming
to this Standard may accept programs written in an enhanced language
without having to report all constructs not conforming to this Stand¬
ard. However, whenever a statement or other program element does not
conform to the syntactic rules given herein, either an error shall
be reported or the statement or other program element shall have an
implementation-defined meaning.

35

APPENDIX 4

Implementation-defined Features

A number of the features defined in this Standard have been left
for definition by the implementor. However, this will not affect
portability, provided that the limits recommended in the various
sections are respected. The way these features are implemented
shall be defined in the user- or system-manual of the specific
implementation.

The following is a list of implementation-defined features:

- accuracy of evaluation of numeric expressions (see 8)

- end-of-line (see 5, 14 and 15)

- exrad-width for printing numeric representations (see 14)

- initial value of variables (see 7)

- input-prompt (see 15)

- longest string that can be retained (see 11)

- value of machine infinitesimal (see 6)

- value of machine infinity (see 6)

- margin for output lines (see 14)

- precision for numeric values (see 6)

- print-zone length (see 14)

- pseudo-random number sequence (see 9 and 20)

- significance width for printing numeric representations (see 15)

- means of requesting the input-reply in batch mode (see 15)

